The number of integral terms in the expansion of $(7^{1/3} + 11^{1/9})^{6561}$ is :-

  • A

    $721$

  • B

    $730$

  • C

    $745$

  • D

    None of these

Similar Questions

Given that $4^{th}$ term in the expansion of ${\left( {2 + \frac{3}{8}x} \right)^{10}}$ has the maximum numerical value, the range of value of $x$ for which this will be true is given by

Let $m$ be the smallest positive integer such that the coefficient of $x^2$ in the expansion of $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ is $(3 n+1)^{51} C_3$ for some positive integer $n$. Then the value of $n$ is

  • [IIT 2016]

Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^n, x \neq 0, n \in N$, be $376$. Then the coefficient of $x^4$ is $......$

  • [JEE MAIN 2023]

Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.

The middle term in the expansion of ${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ in powers of $x$ is

  • [AIEEE 2012]